Reference related to the "Shockingly Voluminous" Rim Gravel

Hi Folks:

Here is a reference from my thesis that a very nice man (who once offered me a job in mineral exploration) turned me on to:

Rytuba, James J., and Vander Meulen, Dean B., 1991, Hot-Spring PreciousMetal Systems in the Lake Owyhee Volcanic Field, Oregon-Idaho;in Raines, G.L., et al., 1991, Geology and Ore Deposits of the Great Basin,Symposium Proceedings, USGS and Geological Society Nevada, Reno, Nevada,Volume II, pp. 1085-1096.
If I remember correctly, I think it is pretty relevant to the dreadfully voluminous rim gravel and provides some corroboration of some of the things Dr. Jerque and others are finding in the field. Dr. Jerque may have a copy and I can scan you a copy sometime if you can't find it.

Summer 2008 on the Owyhee, Part 1

Spent all of last week on the Owyhee. Many rim hikes and a few forays down to the wet stuff. The latter with Liz and her students. Learned alot. Found a fault in Sweetwater Canyon (that between Jordan Creek and Hike-out Camp). Determined that the once 'dreaded' rim gravels are really the 'shockingly voluminous' rim gravels. As for the latter, there appears to be a culmination of aggradation on a platform at about 3900'. Multiple levels are present below this, mainly on the Artillery Rim. Found a tephra in a rare exposed section at the 3900' level near Owyhee Butte. Learned that the Heaven's Gate landslide complex (including an upper reach and a lower reach) is quite huge, particulary when viewed from the perspective of the canyon rim...wow. Can't imagine how this complex was not the source of multiple blockages and breaches. Liz nearly single-handedly augered a 4 m hole in a perfect closed depression. We found the Mazama, and certainly drilled into the late Pleistocene...but didn't find the fat tephra bed that we found in the slide below Bogus Point. For now, please view the following slide show for substantiation of most of the claims above (view in Google Maps or Google Earth for the full informative effect):

Speculations and Declarations from the Spud

Oooohh Boy, Here are some ramblings for you to chew on, some of which I have been chewing on for some time (years). Dr. Jerque’s previous comments are in italics. Sorry to post a dry reply without any figures--I am having trouble pulling them into the blog--will try on Sunday. Figures 2, 15, and 16 are pretty relevant to the discussion.

The upper West Crater lava in the presumed abutment on river right does not have lava-delta deposits (wtf?). In the field, it looks like a dry flow. Why would water have not backed up in this area during the blockage? The contact of young WC on Old WC marks the perimeter of the 3400 ft lake. I suppose this part could have been dry initially as the flow continued in a generally downstream direction....

Yes, the youngest WC (above the 3400 ft contour) does not appear to have any evidence of lava-water interaction. But, the uppermost flow units immediately below 3380 ft surface do transition quickly (within a few meters) into a lava pillow delta via a passage zone (see Figure 2 in my thesis). I can think of at least two options for why the lava above the 3400 ft contour doesn’t have any pillows: 1) Lava was entering the river canyon at a much faster rate than the river discharge (and the rate of lake rise) such that the lava dam growth outpaced the rise of the reservoir; 2) the level of the reservoir stabilized at ~3370 ft (perhaps because a stable spillway developed adjacent to Pruitt’s Castle or because the dam was porous). In either case, if the full discharge of the river could seep through or sneak around the dam, the crest of the dam could grow uninhibited and not be within the reach of the water.

<o:p> </o:p>
Option 1 is complicated by the fact that we know that the rate of dam construction and lake level rise was semi-episodic because of the presence of multiple passage zones (and accompanying subaerial lava) preserved within the dam.

<o:p> </o:p>Option 2 could work because portions of the dam could be porous as observed by Crow et al. (2008), a spillway could have been eroded into the ridge of Tertiary that makes Pruitt’s Castle (near the white star in figure 15 of thesis) contemporaneously with dam construction and lake filling, or some combination of both. In regards to the porosity of the dam, our friendly neighborhood p-mag expert and I discussed this during the recent trip. I had originally conceptualized that the pillow lava deltas would be rather porous but our p-mag expert pointed out that they are likely rather well-consolidated for several reasons. For example, as the deltas form, they are sort of self-packing—a variety of clast sizes are settling and snuggling together as they tumble down and more material is added from above. In addition, some large clasts (pillows) could still be somewhat plastic and deform to fit the space provided them, almost welding together. Depending on the dissolved gases in the lava, its temperature, and the ambient pressure at the locus of emplacement (and maybe some other parameters), the crust of the growing lobes and pillows of lava fractures into tiny glassy quenched bits (hyaloclastite) that serve to fill any interstices in the delta. This hyaloclastite can dominate the delta by volume, leaving the delta matrix supported, and when the hyaloclastite devitrifies, lots of clay minerals are produced further reducing the hydraulic conductivity of the dam (an turning some portions of the dam tan-orange in color—see photo). In contrast, Crow et al. (2008) identified actual cinders in the presumed abutments of some of their lava dams and they even called some dams “sieves” rather than dams. Depending on how these pyroclastics in the <st1:place st="on">Grand Canyon</st1:place> were emplaced, they could provide the necessary porosity to accommodate the discharge and stabilize the lake height. How about that? Are there other models you can think of to explain the outcrops?

<o:p> </o:p>

In regards to Dr. Jerque’s questions about the timing of individual incursions of lava into the river and the total lifespan of the obstruction created, I think the dams are built quickly. The vents supplying lava to the intracanyon lava flows are monogenetic and probably have a life span of months, years, or perhaps tens of years, but not hundreds of years. From my understanding of Snake River Plain volcanism and the experience of those such as our p-mag expert, these lava flows could easily erupt, flow across the uplands, and build a dam in a few months or maybe several years. During that time, individual pulses of lava (flow units, cooling units, surges, etc.) added to the obstructions created by the first lavas in a tug of war battle with the rising lakes. The multiple (and rising in elevation) passage zones at Weeping Wall and WC at tell us this. The resulting dam is so geologically instantaneous that it makes sense to me to model it mostly as a single event. The details of the passage zone elevations, relative amounts of subaerial vs subaqueous lava, and volume of hyaloclastite tell us some of the juicy details of the event but in terms of the ~2 Ma history of the river available to us to model I would consider it one event. Even in the case of the SB dam, where there are two clearly different advances into the canyon (that potentially could be separated by a lot of time) we do nto see any different in age with the p-mag. We also do not see any fluvial deposits intercalated within the dam architecture that would suggest a long time interval (1000s to 10000s of years). What do you think?

<o:p> </o:p>
One of my thesis’ objectives was to try to add data to, and refine, lava dam emplacement and breaching models (and the associated hazards) by trying to study how the rate of lava effusion into a river interacts with the river’s discharge and channel morphology to influence the structure and stability of lava dams. This objective was often overshadowed by the larger objective of just trying to figure out what he-ack is going on out there and distinguish the lava flows from one another but I do think that there is enough data to address the matter in the paper I am putting together on the lava flows.

Cheers,

Spud

First Glance at Fully Geotagged Photos From Recent Trip

The embedded slideshow below includes all of the photos that I took on the trip. They are all geotagged and it is very cool to view them on the map (click 'view map'). Zoom in in terrain mode and have at it. Be sure to check out the areas most far flung from the river...or anywhere that you didn't go. I will eventually trim this collection down and add some captions. Sorry, very few people pictures.

Align your mind with the Owyhee...Spend some time with this slideshow.

Preparing for the upcoming trip? This will help align your mind. Most of these photos are from the rim or, at least, off the river. I certainly love river trips, but the geologic context of the study area is best appreciated from above.

The slides below can be viewed in relation to a map of where the photos were taken because they are geotagged. Just click on a slide and your browser should open up the online photo album. Click on view album map to see where the photos were taken. Zoom in and notice that Google Maps now includes contours in terrain view. That is cool. Click on view in Google Earth and learn a little more about where the photos were taken.

Owyhee Research at GSA in Vegas

Cordilleran Section (104th Annual) and Rocky Mountain Section (60th Annual) Joint Meeting (19–21 March 2008)
Paper No. 1-9
Presentation Time: 11:00 AM-11:20 AM

QUATERNARY BASALTIC VOLCANISM ALONG THE NORTHWESTERN MARGIN OF THE OWYHEE PLATEAU, SE OREGON

SHORT, Emily J., JASTRAB, Jamie M., and HART, William K., Geology, Miami University, 114 Shideler Hall, Oxford, OH 45056, shorte@muohio.edu

The Owyhee Plateau tectonomagmatic province is located in the Oregon-Idaho-Nevada border region and preserves evidence of complex magmatic processes and mantle reservoir interactions over the past 17 Ma. Quaternary basaltic volcanism is concentrated along the northern and northwestern margins of the Plateau in a number of discrete to overlapping volcanic fields characterized by monogenetic cones and small shields. The focus of this investigation is three young basalt volcano fields, the Saddle Butte field (SdB), Jackie's Butte field (JB), and Scott's Butte field (ScB), that lie near the suggested physical northwestern edge of the Owyhee Plateau. In contrast to the multiple monogenetic shield vents of the SdB and the JB, the ScB is dominated by a single vent complex (Scott's Butte) that preserves evidence of early hydrovolcanic activity followed by emergent central and satellite vent Strombolian and Hawaiian activity. New stratigraphic observations and preexisting K-Ar data, when viewed in the context of more extensive chronologic data for the nearby Jordan Valley volcanic field (JVVF), indicate that the volcanism considered in this investigation is less than approximately 1.2 Ma, with portions of the Saddle Butte field likely less than 100 ka in age. Furthermore, stratigraphic relationships along the Owyhee River canyon document the presence of flows likely emanating from 1.9 Ma and older JVVF vents stratigraphically beneath eruptive products of the SdB. Between volcanic field and between vent major and trace element variability is observed including little fractionated, LIL and HFS element depleted olivine tholeiites (HAOT) in the SdB and JB, basalts with characteristics in common with certain Snake River olivine tholeiites (SROT) and young JVVF alkaline basalts in the JB, and basalts transitional to these varieties in the ScB. Within vent geochemical heterogeneities also are observed, only some of which may be produced via shallow fractional crystallization and/or small differences in degree of melting. The observed geochemical complexities require the presence of heterogeneous lithospheric mantle and lower crustal reservoirs beneath this region and post magma generation differentiation processes that involve mixing of heterogeneous melts and/or melts and solids derived from these reservoirs.

Cordilleran Section (104th Annual) and Rocky Mountain Section (60th Annual) Joint Meeting (19–21 March 2008)
General Information for this Meeting

Session No. 1
Igneous/Metamorphic Petrology, and Volcanology
University of Nevada-Las Vegas: Student Union 208C
8:00 AM-12:00 PM, Wednesday, 19 March 2008

Geological Society of America Abstracts with Programs, Vol. 40, No. 1, p. 34


© Copyright 2008 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

UNLV Speaks About Argon-Argon

Here is a nice summary of the Ar-Ar analyses that surpasses anything that I was putting together. I will follow-up with Terry Spell with a discussion about the strat context of the samples.

Nevada Isotope Geochronology Laboratory - Sample Descriptions – House - NBMG

General Comments: Your samples were run as conventional furnace step heating analyses. This type of sample run produces what is referred to as an apparent age spectrum. The "apparent" derives from the fact that ages on an age spectrum plot are calculated assuming that the non-radiogenic argon (often referred to as trapped, or initial argon) is atmospheric in isotopic composition (40Ar/36Ar = 295.5). If there is excess argon in the sample (40Ar/36Ar > 295.5) then these ages will be older than the actual age of the sample. U-shaped age spectra are commonly associated with excess argon, and this is often verified by isochron analysis, which utilizes the analytical data generated during the step heating run, but makes no assumption regarding the composition of the non-radiogenic argon. Thus, isochrons can verify (or rule out) excess argon, and isochron ages are usually preferred if a statistically valid regression is obtained (as evidenced by an acceptably low MSWD value). If such a sample (U-shaped, or more generally discordant) yields no reliable isochron, the most conservative estimate of the age is that the minimum on the age spectrum is a maximum age for the sample (it could be affected by excess argon, the extent depending on the radiogenic yield). 40Ar/39Ar total gas ages are equivalent to K/Ar ages. Plateau ages are sometimes found, these are simply a segment of the age spectrum which consists of 3 or more steps, comprising >50% of the total gas released, which overlap in age at the ±2σ analytical uncertainty level. Such ages are preferred to total gas or maximum ages if obtained. However, in general an isochron age is the best estimate of the age of a sample, even if a plateau age is obtained.

OWY-36 Basalt Groundmass

The age spectrum for this sample is discordant, with both positive and negative ages which overlap 0 within uncertainties, to ages as high as ~660 ka. The total gas age is 194 ± 27 ka, and is equivalent to a conventional K-Ar age. No plateau age or isochron age was defined by these data. This sample had very low, often negative radiogenic argon (%40Ar*) concentrations (i.e. there was no measurable 40Ar* in two of the steps), likely reflecting both low-K contents and young age. In a case such as this there are two possible interpretations. The first is that the sample contains no excess argon and the total gas age is a reasonable estimate. Unfortunately, with no isochron the presence, or absence, of excess argon cannot be confirmed, making this interpretation somewhat tenuous. The most conservative approach is to assume that the discordance is a result of excess argon, and thus the minimum age on the age spectrum is a maximum age for the sample. In this case, since the minimum ages are actually negative, this interpretation would hold that the sample is effectively 0-age. It should be noted that in such as case as this discordance could simply result from there being very little, to no, measurable 40Ar*, which would result in inaccurate and imprecise age determinations. Which interpretation one should choose depends somewhat on geologic relationships. Does the geology and stratigraphy support an age as old as ~194 ka?

OWY-35 Basalt Groundmass

The age spectrum for this sample is mildly discordant and U-shaped. Ages range from an initial age of ~450 ka, to a plateau segment with ages of ~250 ka, and a higher final step age of ~780 ka. The total gas age is 301 ± 24 ka. Steps 2-10 (94% of the total 39Ar released) define a plateau with a younger age of 248 ± 25 ka. Steps 1-4 (49% of the total 39Ar released) yield an isochron age of 179 ± 21 Ma. The isochron indicates the presence of excess argon (initial 40Ar/36Ar = 305 ± 2) in this sample. Thus, ages calculated for the age spectrum, which assume the initial argon has 40Ar/36Ar = 295.5, should be considered anomalously old. The isochron age is the most reliable for this sample. Note that the radiogenic yields are significantly higher for this sample than for the previous OWY-36 sample, thus the ages should be considered significantly more reliable.

OWY-23 Basalt Groundmass

The age spectrum for this sample is also moderately discordant and U-shaped, with ages which fall from an initial step of ~1.5 Ma to a plateau segment with ages of ~180 ka, and followed by older steps (to ~840 ka) in the final ~15% gas released. The total gas age is 292 ± 39 ka. Steps 2-7 (81% of the total 39Ar released) define a plateau with a younger age of 182 ± 42 ka. Steps 2-7 also yield an imprecise isochron age of 120 ± 130 ka. The isochron does not indicate the presence of excess argon (initial 40Ar/36Ar = 298 ± 6) in this sample. Also, note that all the data points defining the isochron fall near the y-axis in a cluster (similar radiogenic yields, ), thus the y-axis intercept (initial 40Ar/36Ar ratio) is fairly well defined, whereas the x-axis intercept (age) is very poorly defined. Thus, this isochron is not useful for age determination, but does provide important information regarding excess argon, i.e. within uncertainty the sample cannot be said to contain excess argon. Other processes, such as recoil of reactor generated 39Ar during irradiation, can also produce discordant age spectra for fine grained basalt groundmass samples, and this may explain this samples age spectrum in particular. Given these considerations, the plateau age should be considered the most reliable for this sample.

OWY-22 Basalt Groundmass

The age spectrum for this sample is nearly ideally flat and concordant, with the exception of higher ages in the final ~10% gas released. The total gas age is 70 ± 19 ka, and steps 1-8 (88% of the total 39Ar released) define a plateau with a younger age of 38 ± 21 ka. Steps 2-5 define a valid isochron age, however, as for OWY-23 above, the data are tightly clustered at the y-axis due to similar, and low, %40Ar* values, making this isochron useful only for confirming the composition of the initial 40Ar/36Ar ratio, which is indistinguishable from atmospheric argon. Thus, the plateau age can be considered reliable and the best estimate of the eruption age for this sample.

OWY-13 Basalt Groundmass

The age spectrum for this sample is discordant, with ages that fall, rise, and fall again with increasing %39Ar released. The total gas age is 8.3 ± 0.6 Ma. Steps 3-7 (62% of the total 39Ar released) define a plateau with a younger age of 7.0 ± 1.0 Ma. There was no isochron defined by these data. The discordance shown by this samples age spectrum must be considered to be potentially caused by the presence of excess argon, although this cannot be confirmed or denied since no isochron was obtained. Thus, in this case the most conservative interpretation is that the youngest age on the age spectrum (step 10, 3.6 Ma) is a maximum age for the sample.

OWY-12 Basalt Groundmass

This sample is similar to OWY-36 described above, and similar interpretations apply. The total gas age is 453 ± 94 ka. Steps 3-5 (50% of the total 39Ar released) define a plateau with a younger, and imprecise, age of 173 ± 145 ka. There was no isochron defined for this sample. Note that overall the age spectrum is distinctly U-shaped. This may indicate excess argon is present in the sample and thus calculated ages may be anomalously old. This cannot be confirmed as no isochron was obtained. As for OWY-36, since several steps yield negative radiogenic yields and 0-age calculations this sample is best interpreted as being effectively 0-age, i.e. it is so young that we cannot accurately measure the accumulated 40Ar* against the background of initial argon. The plateau age should only be used if stratigraphic constraints suggest it is accurate.

As is typical, these comments are made with little knowledge of geologic relationships and are simply interpretations of the laboratory data. Often knowledge of, e.g., stratigraphic relationships can determine which interpretation is most valid for a particular sample. The first sample above, OWY-36 is a good example of this. Feel free to call or email (best way to contact me terry.spell@unlv.edu) if you have further questions that I might assist with.