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Stratigraphic evidence for the role of lake spillover in the inception 
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ABSTRACT

Late Miocene and early Pliocene sediments exposed along the lower Colorado
River near Laughlin, Nevada, contain evidence that establishment of this reach of the
river after 5.6 Ma involved flooding from lake spillover through a bedrock divide
between Cottonwood Valley to the north and Mohave Valley to the south. Lacustrine
marls interfingered with and conformably overlying a sequence of post–5.6 Ma fine-
grained valley-fill deposits record an early phase of intermittent lacustrine inundation
restricted to Cottonwood Valley. Limestone, mud, sand, and minor gravel of the Bouse
Formation were subsequently deposited above an unconformity. At the north end of
Mohave Valley, a coarse-grained, lithologically distinct fluvial conglomerate separates
subaerial, locally derived fan deposits from subaqueous deposits of the Bouse Forma-
tion. We interpret this key unit as evidence for overtopping and catastrophic breach-
ing of the paleodivide immediately before deep lacustrine inundation of both valleys.
Exposures in both valleys reveal a substantial erosional unconformity that records drain-
age of the lake and predates the arrival of sediment of the through-going Colorado
River. Subsequent river aggradation culminated in the Pliocene between 4.1 and 3.3 Ma.
The stratigraphic associations and timing of this drainage transition are consistent with
geochemical evidence linking lacustrine conditions to the early Colorado River, the
timings of drainage integration and canyon incision on the Colorado Plateau, the
arrival of Colorado River sand at its terminus in the Salton Trough, and a downstream-
directed mode of river integration common in areas of crustal extension.
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INTRODUCTION AND BACKGROUND

The development of the lower Colorado River is closely
linked with incision of Grand Canyon, and both topics have been
debated for most of the past century (e.g., Blackwelder, 1934;

Longwell, 1936, 1947; Hunt, 1969; Lucchitta, 1972, 1979;
Spencer and Patchett, 1997; Lucchitta et al., 2001). The Colorado
River drains a large interior highland (including the Colorado
Plateau and large parts of the southern and central Rocky Moun-
tains) and then passes through the arid lowlands of the southern
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Figure 1. Overview of the lower Colo-
rado River region from the western edge
of Grand Canyon to the Salton Trough.
Maximum extent of late Miocene lakes is
indicated on basis of extrapolations of
highest outcrops of Hualapai Limestone
and Bouse Formation in relation to mod-
ern topography. Inset map shows the
extent of the Colorado River Basin north
of the confluence of the Colorado and
Gila Rivers near Yuma, Arizona.

Basin and Range Province before emptying into the Gulf of Cali-
fornia (Fig. 1). The transition between the highland and lowland
reaches is Grand Canyon, where the river is incised more than
1000 m below the surrounding plateau. Downstream from Grand
Canyon, the Colorado River follows a peculiar course through the
rugged terrain of the Basin and Range Province. The river’s
course initially tracks westward through a series of alternating
alluvial basins and bedrock canyons in the Lake Mead area, and
then it abruptly turns south through more canyons and basins
before reaching the Gulf of California.

The course of the Colorado River downstream from western
Grand Canyon clearly was established some time after 6 Ma
(Lucchitta, 1979; Spencer et al., 2001), but the events that led to
its development remain in some dispute (Spencer and Patchett,
1997; Lucchitta et al., 2001; Spencer and Pearthree, 2001; House
et al., 2005a). Indeed, conflicting ideas about the development of
the lower course of the Colorado River bear on the nature and tim-
ing of uplift of the Colorado Plateau and adjacent areas (Luc-
chitta, 1979; Spencer and Patchett, 1997; Lucchitta et al., 2001;
Karlstrom et al., 2007). In this paper, we report on new geologic
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evidence from a central reach of the lower Colorado River that
helps to clarify some aspects of the mechanism and timing of the
river’s inception.

Models for the Inception and Development of the Lower
Colorado River

Three primary mechanisms have been proposed to explain
the existence of and the particular features associated with the
lower course of the Colorado River: (1) antecedence; (2) com-
binations of regional subsidence, marine incursion, headward
erosion, drainage capture, and river progradation; and (3) down-
stream integration via lake spillover. The simplest explanation is
antecedence, in which the river existed along its current course
before uplift of the Colorado Plateau and adjacent areas and sim-
ply incised in response to the uplift (Powell, 1875; Dutton, 1882;
Blackwelder, 1934). Abundant evidence that the lower Colorado
River did not follow its present course before 6 Ma rules this pos-
sibility out, however (e.g., Lucchitta, 1979).

Fundamental differences in the latter two explanations stem
primarily from alternate interpretations of the depositional envi-
ronment of the Bouse Formation, a distinctive suite of sediments
that occupy a key stratigraphic position between pre-integration
and postintegration deposits in a string of alluvial basins between
Hoover Dam and the Salton Trough (Fig. 1). The Bouse Forma-
tion includes a sequence of basal limestone and associated tufa
overlain by mud, sand, and minor gravel of varying thicknesses
(Metzger, 1968; Buising, 1990). It has been interpreted as a
marine-estuarine deposit because it contains a limited assemblage
of marine fossils in exposures as far north as Parker, Arizona
(Metzger, 1968; Smith, 1970; McDougall, 2005). In contrast,
strontium isotope ratios in Bouse carbonates throughout the
extent of the deposit are more similar to modern Colorado River
water than to seawater, which supports the hypothesis that Bouse
sediments were deposited into lakes fed by the Colorado River
(Spencer and Patchett, 1997; Poulson and John, 2003).

The marine-estuarine interpretation of the Bouse Formation
supports an upstream-directed model of river integration involv-
ing headward erosion and drainage capture tied to regional subsi-
dence (Lucchitta, 1972, 1979; Lucchitta et al., 2001). According
to this model, a trough along the course of the Colorado River to
near the mouth of Grand Canyon subsided to near or below sea
level, allowing the sea to intrude far to the north from the Gulf of
California. Base-level fall also drove incision and headward ero-
sion into the western Grand Canyon area, eventually capturing the
upper Colorado River and diverting it into the estuary. Sediment
supplied by the Colorado River gradually filled in the estuary and
forced the sea back to the south, possibly concurrent with regional
uplift. In a purely marine interpretation, extant Bouse deposits
550 m above sea level near the northern limit of the unit require
at least that much uplift since deposition.

Alacustrine interpretation of the Bouse Formation supports a
downstream-directed integration model involving lake spillover
through a series of closely spaced, enclosed basins. Blackwelder

(1934) first proposed this mechanism for the development of the
lower Colorado River. His hypothesis languished for decades but
has recently been revitalized with new strontium isotope data link-
ing Bouse basal carbonates throughout the system to water of the
Colorado River (Spencer and Patchett, 1997). The current form of
this hypothesis states that the Colorado River developed within
some arrangement of downstream-spilling lakes beginning on the
Colorado Plateau in the middle Tertiary (Meek and Douglass,
2001) and continuing through the area now occupied by Grand
Canyon and the lower course of the Colorado River in the late Ter-
tiary (Spencer and Patchett, 1997; Spencer and Pearthree, 2001;
House et al., 2005a; Spencer et al., this volume). After the upper
Colorado River integrated through the Grand Canyon area, it
formed a series of lakes along the modern river’s course. The river
extended downstream as basins filled and successive bedrock
divides were overtopped and lowered. The river reached the sea
when a final divide north of Yuma was overtopped. This down-
stream-directedmodeldoesnotdependonregionalsubsidenceand
subsequent uplift and only requires a sufficiently persistent influx
of water to fill the basins and ultimately decreasing outlet eleva-
tions of each lake basin along the southward course of the river.

Critical evaluation of the competing models has been hin-
dered by a lack of stratigraphic evidence documenting the geo-
logic circumstances and timing of the arrival of the Colorado
River into the region. In this paper, we report on new stratigraphic
and tephrochronologic evidence from Mohave and Cottonwood
Valleys (Fig. 2) that is consistent with the lake-spillover model.
Our evidence comes from geologic mapping of late Miocene and
early Pliocene sediments on both sides of an inferred bedrock
paleodivide that would have separated the valleys. The stratigra-
phy of the deposits in each valley records a concurrent series of
changes in depositional conditions that are consonant with short-
lived lacustrine inundation in the upstream valley, flooding
through the valley-separating divide, followed by an episode of
deeper lacustrine inundation of both valleys. Tephrochronologic
data indicate that these events occurred after 5.6 Ma. The deep
lacustrine episode was followed by a period of erosion and then
thick aggradation of sand and gravel associated with the Colorado
River. Additional tephrochronologic data indicate that river
aggradation culminated soon after 4.1 Ma and that net downcut-
ting has dominated the history of the river since at least 3.3 Ma.

STUDY AREA

Cottonwood and Mohave Valleys are elongate, north-trend-
ing alluvial valleys along the lower Colorado River that lie
roughly halfway between the mouth of Grand Canyon and the
Gulf of California. The valleys are structural basins produced by
major crustal extension in the middle Miocene (Howard and John,
1987; Spencer and Reynolds, 1989; Faulds et al., 1990). Our
primary study area is approximately the southern half of Cotton-
wood Valley and the northern third of Mohave Valley. Light-
colored Tertiary granitic rocks in the lower plate of a major
detachment fault form the bulk of the Newberry Mountains on the
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west side of the study area, whereas upper-plate Tertiary volcanic
and minor sedimentary rocks predominate in the Black Moun-
tains on the east side. Alluvial deposits derived from each side of
the valleys reflect this bedrock source dichotomy and help con-
strain preriver valley geometry. North of Cottonwood Valley, the
Colorado River flows through Black Canyon, which separates
this reach of the river from the west-trending reach in the Lake
Mead area. The Pyramid hills (informal name) form the bound-
ary between the Cottonwood and Mohave Valleys, and they are
composed almost entirely of Proterozoic megacrystic granite
(Faulds et al., 2004). The Colorado River has carved Pyramid
Canyon through this divide. Topock Gorge, another rugged
bedrock canyon, defines the southern margin of Mohave Valley.
Substantial parts of southern Cottonwood Valley and northern
Mohave Valley are deeply dissected (Fig. 2), and mapping and
interpretation of sedimentary strata exposed in these areas pro-
vide most of the new information that we consider in this paper
(Faulds et al., 2004; House et al., 2004, 2005b; Pearthree and
House, 2005).

KEY STRATIGRAPHIC RELATIONS

Correlative deposits from each side of the Pyramid hills paleo-
divide document changes in depositional conditions associated
with the arrival and early development of the Colorado River
(Fig. 3). Important late Miocene to early Pliocene stratigraphic
units exposed within �20 km of the Pyramid hills paleodivide,
from oldest to youngest, include: (1) postextensional alluvial-fan
deposits derived from the valley-bounding mountains (Tfn and
Tfb1; Newberry and Black Mountain fanglomerate); (2) axial
valley facies, including fine gravel from the Black and Newberry
Mountains interfingered with valley-filling silt and sand deposits
(Tlcc and Tlcf; the Lost Cabin beds, found only in Cottonwood
Valley); (3) gravelly alluvial fills in paleochannels cut in fanglom-
erate (Tng; Newberry channel gravel, found only in northern
Mohave Valley); (4) coarse axial valley deposits dominated by
clasts of Precambrian granite (Pyramid gravel, found only in
northern Mohave Valley); (5) fine-grained deposits of the Bouse
Formation, which typically include a thin basal limestone, locally
grading upward into clay, silt, and sand beds (Tbl and Tbms;
found in both valleys); (6) elaborately cross-stratified early Colo-
rado River deposits of medium to coarse sand and gravel with
abundant exotic, well-rounded clasts (Tcb; Bullhead alluvium,
both valleys; generally correlative to unit B of Metzger and
Loeltz, 1973); (7) local fan deposits interfingered with unit Tcb
(Tfb2, both valleys); and (8) local fan deposits deposited on ero-
sional surfaces cut across all older units (QTf, both valleys). We
have identified three different tephra layers in the sequence that
provide new temporal constraints on the development of the river
in this reach. They include the 5.6 Ma tuff of Wolverine Creek;
the 4.1 Ma lower Nomlaki tephra layer (informal name); and the
3.3 Ma Nomlaki Tuff. Detailed descriptions of these key units,
their geochemical characteristics, and their age determinations
are provided in Appendix 1 and Table A1.

The Cottonwood Valley Section

Late Miocene sedimentary strata in southern Cottonwood
Valley (Fig. 3) suggest that deposition occurred in an enclosed
basin with large alluvial-fan complexes extending to the valley
axis from the Newberry and Black Mountains (units Tfn and
Tfb1, Fig. 3). Exposures in the area of Lost Cabin Wash along the
eastern shore of Lake Mohave reveal indurated, tilted fanglomer-
ate deposits (Tft, Fig. 3) that date to the period of active normal
faulting in the middle Miocene (Spencer and Reynolds, 1989).
Gently eastward-dipping fanglomerate dominated by granitic
clasts derived from the Newberry Mountains unconformably
overlies the tilted deposits at �240 m above sea level (a.s.l.). This
Newberry fanglomerate grades into flat-lying axial valley gravel
deposits that contain mixed clasts from the Newberry and Black
Mountains (coarse-grained facies of the Lost Cabin beds, Tlcc).
The axial gravel deposits grade upward into a sequence of flat-
lying sandstone, siltstone, and mudstone beds with minor gravel
(fine-grained facies of the Lost Cabin beds, Tlcf; Fig. 4A). The
Lost Cabin beds grade laterally into local fanglomerate and con-
tain several weak to moderately developed paleosols (Fig. 4B).
We infer that the foregoing stratigraphic relations preclude the
presence of a through-going Colorado River. Our interpretation is
that the valley was an enclosed basin during the deposition of the
Lost Cabin beds, and the axial drainage in southern Cottonwood
Valley fed a depocenter to the north, the direction in which the
valley widens and the fine-grained Lost Cabin beds thicken. The
5.59 � 0.05 Ma tuff of Wolverine Creek (Fig. 4C; Table A1) is in
the upper third of the fine Lost Cabin beds.

Fine Lost Cabin beds typically are overlain by Black Moun-
tain fanglomerate (Tfb2 and upper part ofTfb1) along an erosional
unconformity at an elevation of 350 m a.s.l. or less. In some lo-
cations, however, thin beds of Bouse limestone and calcareous
mud interfinger with the upper few meters of the Lost Cabin beds
(Fig.5A).ThickandextensiveBouse limestone, sand,andmudde-
posits overlie a minor, locally erosional unconformity above this
keyinterval (Fig.5B). Inplaces, theunconformablecontact ischar-
acterized by small channels filled with local gravel and reworked
mud (Fig. 5C). This stratigraphic relationship suggests a phase of
intermittent lacustrine and subaerial sedimentation separated from
a more extensive and prolonged period of lacustrine deposition by
a period of erosion. At higher elevations to the east, Bouse lime-
stone rests on gently west-dipping fan paleosurfaces underlain by
weathered Black Mountain fanglomerate. In a few localities, up to
10mofmudstone, siltstone, andsandstonearepreservedabove the
basal limestone (Fig. 5D). We have found Bouse limestone, tufa,
and related clastic shoreline sediments at elevations up to 550 m
a.s.l. in central Cottonwood Valley, indicating a local water depth
of at least 200 m (Fig. 2). The upper Bouse contact typically is ero-
sional, and Bouse deposits and some underlying Lost Cabin beds
were removed prior to renewed fanglomerate deposition.

Early Colorado River sand and gravel deposits (Bullhead
alluvium), consisting of a mix of well-rounded, exotic gravel 
and subangular local gravel, rest on an erosional unconformity
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Figure 4. Photographs of the Lost Cabin beds in the Lost Cabin Wash
area. (A) Thick section of fine-grained Lost Cabin beds (Tlc) overlain by
Black Mountain fanglomerate (Tfb). (B) Paleosol in the Lost Cabin beds
overlying the tuff of Wolverine Creek. Note rock hammer for scale. Site
is in Odyssey wash (informal name) in vicinity of Lost Cabin Wash.

carved deeply into all of the older deposits. In southern Cotton-
wood Valley, the lowest exposed outcrops of the Bullhead allu-
vium are at the level of Lake Mohave (�195 m a.s.l.), and they
have been found as high as 427 m in the valley. Gently west-dip-
ping Black Mountain gravel deposits (QTf) with massive duri-
pans up to 3 m thick cap the highest ridges on the piedmont. These
piedmont deposits rest unconformably on older Black Mountain
fanglomerate (Tfb) and Bullhead alluvium and were presumably
graded to a late Pliocene paleoriver level of �300–330 m a.s.l.

The Northern Mohave Valley Section

Stratigraphic relations in northern Mohave Valley (Fig. 3)
also record a late Miocene to early Pliocene transition from local
drainage to deep inundation to through-going Colorado River,
and they provide an interesting complement to the Cottonwood
Valley sequence. Conspicuous differences between the late

Miocene to early Pliocene strata in each valley exist and are inter-
preted to have resulted from their locations relative to the inferred
paleodivide between the valleys. The lowest strata exposed in
northern Mohave Valley consists of local fanglomerate, which at
various locations contains gravel derived from the Newberry
Mountains, the Black Mountains, or the Pyramid hills (Faulds 
et al., 2004). This is consistent with alluvial-fan deposition from
the western, eastern, and northern flanks of the valley and drain-
age to a depocenter to the south.

A particularly illustrative example of the northern Mohave
Valley section is exposed in the bluffs astride the Colorado River
south of Laughlin, Nevada (Figs. 2 and 6A). There, a deposit of
cross-stratified, locally derived gravel (Newberry paleochannel
gravel) fills relatively small, roughly south-trending paleochan-
nels cut into Newberry fanglomerate (Fig. 6B). The fanglomerate
and paleochannels are overlain along an erosional unconformity
by a distinctive coarse-grained fluvial conglomerate, the compo-
sition of which is dominated by clasts of dark-colored megacrys-
tic granite and lesser amounts of gravel eroded from local
fanglomerate deposits (Fig. 6C). We have not identified any diag-
nostic Colorado River sediments in this gravel unit. The nearest
source of the dominant lithology (megacrystic granite) is in the
Pyramid hills paleodivide �7 km to the north, and we have infor-
mally named the unit the Pyramid gravel. The Pyramid gravel is
a broadly tabular deposit up to 30 m thick, is crudely to moder-
ately stratified, and has clast-supported and matrix-supported
beds. Clast imbrication and trough cross-stratification are evident
in several channel-filling exposures. Boulders up to 1 m in inter-
mediate-axis diameter are common in the lower part of the
deposit, but it typically is a pebble and cobble conglomerate. The
basal limestone of the Bouse Formation overlies the Pyramid
gravel in the Laughlin bluff section along a sharp, relatively flat
contact. This stratigraphic pairing indicates an abrupt change
from high- to low-energy depositional conditions (Fig. 6D). The
entire foregoing sequence is overlain along a high-relief erosional
unconformity by the Bullhead alluvium (Fig. 6E).

At other locales in Mohave Valley, basal Bouse deposits
overlie paleo–alluvial-fan surfaces and bedrock slopes and are
interbedded with fanglomerate deposits up to elevations of 550 m
a.s.l. (Fig. 7). High on the east side of the valley, the tuff of
Wolverine Creek (Table A1) is interbedded with fanglomerate
deposits 11 m below the Bouse limestone, providing a maximum
age constraint of 5.6 Ma for deep inundation of Mohave Valley
(Fig. 7). The basal limestone beds are everywhere less than a few
meters thick but are locally overlain by up to 30 m of mud and
sand. The distribution of outcrops of the Bouse Formation sug-
gests that water depth in northern Mohave Valley may have
exceeded 400 m, and the general form of the valley at that time
was similar to its present form (Fig. 8).

As in Cottonwood Valley, a thick deposit of Bullhead
alluvium rests on an unconformity that cuts across all older 
basin deposits in Mohave Valley. The lowest exposures of Bull-
head alluvium in both valleys contain abundant locally derived
gravel mixed with well-rounded quartzite, chert, and other exotic
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Figure 5. Stratigraphic relations between the Lost Cabin beds and the Bouse Formation. (A) Coarse Lost Cabin beds (Tlc) overlain by Bouse lime-
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pebbles and small cobbles (Figs. 9A and 9B). Exposures of Bull-
head alluvium higher in the section on the Black Mountain
piedmont in Mohave and Cottonwood Valleys contain laterally
extensive, tabular beds of trough cross-stratified gravel, thick beds
of complexly cross-stratified sand, and minor flat-lying mud.
Overall, the Bullhead alluvium is a very complex fluvial deposit
with numerous stratigraphic discontinuities (e.g., Fig. 12 in Metz-
ger and Loeltz, 1973); however, to date we have not recognized
any paleosols or erosion surfaces suggestive of major hiatuses or
cut-and-fill episodes in our study area. Bullhead alluvium is exten-
sively interstratified with piedmont fanglomerate deposits, partic-
ularly in the upper part of the section. Two outcrops of the 4.1 �
0.5 Ma lower Nomlaki tephra layer (Table A1) rest in fine tribu-
tary fan gravel at elevations of 365–390 m a.s.l., but Bullhead allu-
vium is found at stratigraphically higher positions up to 400 m

a.s.l. in the immediate vicinity of each tephra layer exposure in
Mohave Valley (Fig. 10). Thus, the lower Nomlaki tephra is very
near the top of the Bullhead aggradational sequence.

Relatively thin, west-dipping Black Mountain piedmont
gravels with very strongly developed duripans (Herriman and
Hendricks, 1984) lie above an erosion surface cut on Bullhead al-
luvium and Black Mountain fanglomerate. The 3.3 Ma Nomlaki
Tuff (Table A1) is intercalated in these piedmont deposits at ele-
vations of 395 and 350 m a.s.l., so they must have been graded to
a former, post-Bullhead level of the Colorado River below 350 m
a.s.l. In summary, the tephrochronologic and stratigraphic evi-
dence support an interpretation that the Bullhead aggradation
event in the study area culminated sometime around ca. 4.1 Ma,
and incision into the deposit of at least 50 m had occurred by
ca. 3.3 Ma.
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Figure 6. Photographs of the Laughlin Bluffs section. (A) Complete sec-
tion (�26 m thick) showing stratigraphic relation between each key unit
(Tfn—Newberry Mountain fanglomerate; Tng—Newberry paleochan-
nel gravel; Tpg—Pyramid gravel; Tbl—Bouse limestone; Tcb—Bull-
head alluvium; Qc—Younger Colorado River sediments). (B) Newberry
gravel (Tng) filling paleochannel in fanglomerate (Tfn). (C) Pyramid
gravel flood deposit (Tpg) filling paleochannels in Newberry fanglom-
erate (Tfn). (D) Bouse marl (Tbl) disconformably overlain by Bullhead
alluvium (Tcb). (E) Base of the Bullhead alluvium incised into Newberry
fanglomerate.

THE DEVELOPMENT OF THE COLORADO RIVER 
IN COTTONWOOD AND MOHAVE VALLEYS

Any proposed scenario for the development of the Colo-
rado River in this region must accommodate several key strati-
graphic relationships and temporal constraints in Mohave and
Cottonwood Valleys. No through-going drainage connected the
valleys before 5.6 Ma. In Cottonwood Valley, an interval of 
fine-grained clastic deposition by local streams was ongoing 
by 5.6 Ma and was terminated with an erosional interval fol-
lowed by limestone deposition. There is strong evidence for 
a southward-directed drainage divide failure between the val-
leys before deep inundation of both valleys. A period of ero-
sion followed the deep inundation and preceded the arrival 
of voluminous coarse Colorado River sediment. After its ar-
rival, the river aggraded dramatically until shortly after 4.1 Ma.

River incision had reached well below its level of maxi-
mum aggradation by 3.3 Ma and has remained below that level 
to the present. The entire series of transitional events from 
enclosed basins to deep-water inundation followed by the 
arrival of the Colorado River and thick aggradation, and finally
the initial river incision appears to have transpired in less than 
2 m.y.

We propose the following scenario for the early develop-
ment of the Colorado River based on interpretation of the evi-
dence that we have compiled from this area (principal events
summarized in Fig. 11):

1. Through much of the late Miocene, the Cottonwood and
Mohave Valleys had separate, closed drainage systems (Fig. 11A)
that were relicts of middle Miocene extensional faulting as shown
by local fanglomerates, axial valley gravel deposits, and inferred
playa deposits north and south of the primary study area.
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Figure 7. Photograph of the tuff of Wolverine Creek and overlying, thin
bed of Bouse limestone in Secret Pass Wash (modified from House et al.,
2005a). Person indicated in lower part of photo is for scale.

2. Exotic water and sediment, possibly associated with the
Colorado River, began to enter Cottonwood Valley from the north
in the late Miocene (Fig. 11B). This resulted in the expansion of
fine-grained, primarily subaerial deposition into southern Cotton-
wood Valley from the north. This interval of deposition was on-
going by 5.6 Ma, as shown and dated by the Lost Cabin beds and
the tuff of Wolverine Creek.

3. The influx of water eventually formed a lake in Cotton-
wood Valley (Fig. 11C), represented by thin beds of limestone
interfingered with upper Lost Cabin beds.

4. Water began to flow over or through extensively fractured
bedrock in the Pyramid hills, as indicated by the Newberry paleo-
channel gravel. Eventually, the divide was catastrophically
breached, as shown by the Pyramid gravel (Fig. 11C). In Cotton-
wood Valley, this event is recorded as an erosional interval sepa-
rating the Lost Cabin beds and the bulk of the Bouse Formation.

5. Persistently inflowing Colorado River water was blocked,
possibly at the south end of Mohave Valley, resulting in deep
inundation of both Mohave and Cottonwood Valleys (Fig. 11D).
The maximum water surface elevation in both valleys was
�550 m a.s.l. as inferred from the highest outcrops of Bouse
limestone, sandstone, and tufa in both valleys. During this time,
concurrent influx of fine sediment and reworking of local sedi-
ments resulted in deposition of clastic sediments of the Bouse
Formation, possibly in the form of a delta extending from north-
ern Cottonwood Valley.

6. The paleodivide to the south was ultimately overtopped
and eroded in some manner, resulting in lake drainage and ero-
sion of Bouse and older deposits (Fig. 11E).

7. Voluminous Colorado River bed-load sediment arrived into
subaerially exposed valleys (Fig. 11E) and was first deposited with
abundant locally derived sediments at levels near the modern river

 Fanglomerate

Bouse limestone outcrop

Bouse Formation sediments

Volcanic rocks

Granitic rocks

Pyramid gravel

Tuff of 
Wolverine Ck.

Black Mountains

Newberry Mountains

maximum Bouse water surface

Bouse fill?

Bouse fill?

Horizontal Distance, West to East (km)

M
e

te
rs

 A
b

o
v

e
 S

e
a

 L
e

v
e

l

600

500

400

300

200

M
e

te
rs

 A
b

o
v

e
 S

e
a

 L
e

v
e

l

600

500

400

300

200

7.5 5 2.5 0 2.5 5 7.5

Figure 8. Schematic diagram showing distribution of Bouse limestone, tufa, and clastic sediments in Mohave Valley and speculations on extent of
Bouse fill. Extant outcrops of Bouse Formation are shown in black (adapted from House et al., 2005a).



Stratigraphic evidence for the role of lake spillover 345

�150–200 m a.s.l. This is indicated by the lower part of the Bull-
head alluvium and its lowest contact with underlying fanglomerates.

8. Massive, presumably integration-driven aggradation of the
Colorado River and tributary fanglomerates filled Mohave and
Cottonwood Valleys with sediment to a level of �400 m a.s.l.
(Fig. 11F). This aggradational interval culminated shortly after
4.1 Ma, as indicated by stratigraphic relations among the Bullhead
alluvium, local fanglomerate, and the lower Nomlaki tephra layer.

9. Incision of the Colorado River below the maximum level
of aggradation began before 3.3 Ma (Black Mountain piedmont
gravel, Nomlaki Tuff) and ultimately continued to a level near
modern river grade, resulting in the removal of vast amounts of
Bullhead alluvium and local fanglomerate (not specifically
shown on Fig. 11, but similar to Fig. 11E).

DISCUSSION: REGIONAL GEOLOGIC
CONNECTIONS AND PROCESS IMPLICATIONS

The postulated sequence of events outlined here is consistent
with recent geochemical studies that have tied the development of
the lower Colorado River to lacustrine deposits elsewhere along
the river’s course (Spencer and Patchett, 1997; Poulson and John,
2003). It is also consistent with stratigraphic and geochronologic
evidence for development of the Colorado River in areas upstream
(e.g., Howard and Bohannon, 2001) and downstream (e.g., Buis-
ing, 1990; Dorsey et al., 2007) as described next.
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Figure 9. Examples of the lower, erosive contact at the base of Bull-
head alluvium in Cottonwood and Mohave Valleys. (A) Paleochannel in
Granite Wash, Cottonwood Valley, �25 m above Lake Mohave surface
(195 m at mouth of wash). Deposit is poorly sorted, massive to cross-
stratified pebbly conglomerate with mix of dominantly local gravel and
sparse, exotic, well-rounded pea gravel. Bullhead paleochannel is cut
into east-dipping Newberry Mountain fanglomerate and is overlain
uncomformably by younger alluvial fan deposits (QTf). (B) Base of
gravelly Bullhead alluvium incised in Newberry fanglomerate in the
Laughlin bluffs area (Panda gulch of House et al., 2005a). Note con-
spicuous contact. Deposit is mix of locally derived coarse, subrounded
gravel and exotic, well-rounded pea gravel and cobbles. Lowest ex-
posure of Bullhead alluvium in Panda gulch is 18 m above modern
Colorado River level (152 m at mouth of gulch). Tfn—fanglomerate;
Tcb—Bullhead alluvium.
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locally derived fanglomerate. The cross-stratified gravels contain
far-traveled sediment and have sedimentary structures indicative
of generally southward transport (Buising, 1990). These relations
suggest that an influx of water from the north preceded and
accompanied basal Bouse deposition in this area. Buising (1990)
interpreted this association as evidence for a fluvial-marine inter-
face; however, it is also consistent with a fluvial-lacustrine inter-
face similar to, but more well developed than, what we have
described in the Laughlin area.

If the Bouse Formation at Parker records an interface between
the early Colorado River and the sea, then basal Bouse and interfin-
gered Colorado River deposits there would have to be older than
deposits in the Laughlin area. Additionally, there should be some
evidence for northward transgression of the fluvial-marine inter-
face through the intervening areas. However, at Laughlin, the
(younger in the case of transgression) Bouse Formation overlies a
south-directed divide-breach deposit composed of locally derived
sediments. The only Colorado River deposit in the northern
Mohave Valley section overlies the Bouse limestone along a major
disconformity. There is no evidence of a through-flowing Colorado
River below the lowest Bouse outcrops at Laughlin. This argues
against the presence of the river in the Parker area before the divide
between Mohave Valley and Cottonwood Valley was breached.

The simplest, but not necessarily the only, explanation of the
Bouse stratigraphy in each location is that drainage from a lake in
Mohave and Cottonwood Valleys delivered southward-flowing
water into the Parker area, ultimately forming a large lake into which
the Bouse Formation and early Colorado River sediment were
deposited.

Distribution and Elevations of the Highest Bouse Outcrops
The elevations of highest Bouse limestone outcrops along the

lower Colorado River form much of the foundation for the marine
transgression–rapid uplift model. However, the profile of outcrop
elevations has an upward-stepped progression from south to north,
and the steps coincide with locations of likely bedrock divides be-
tween successive basins (Spencer et al., this volume). For example,
the highest Bouse Formation outcrops from the Lake Havasu area
in the north to the Chocolate Mountains in the south are consistently
330 m a.s.l., �220 m lower than in Mohave Valley (Spencer et al.,
this volume). This dramatic decrease in water-surface elevation is
consistent with separate lake basins and is difficult to reconcile with
a continuous marine incursion. In our study area, the highest out-
crops of Bouse marl, tufa, and clastic sediments that we have found
are all at similar elevations along �33 km of the axis of the valleys
(Fig. 2) and are interpreted as shoreline deposits that record inunda-
tion of both valleys by the same deep lake. It is reasonable to sus-
pect that had significant regional uplift occurred, the highest extant
shoreline deposits separated by the greatest north-south distance
would be at distinctly different elevations.

Directional Age Controls on the Bouse Formation
Determination of the age of the Bouse limestone in each basin

would provide important clues about the deposit’s origin. In a ma-
rine transgression scenario, one would expect that the limestone

The Muddy Creek Formation and the Hualapai Limestone

The basic stratigraphic associations described in Cotton-
wood and Mohave Valleys are similar to relationships upstream
in the Lake Mead area, where longer-lived lacustrine conditions
immediately preceded the arrival of the Colorado River. A typical
pre–Colorado River stratigraphic package found in basins in this
area includes the Muddy Creek Formation (Longwell, 1936;
Bohannon, 1984), which consists of a thick sequence of primar-
ily subaerial, siliciclastic and evaporite deposits that accumulated
between ca. 15 and 6 Ma. The Hualapai Limestone is a lacustrine
carbonate unit that is interbedded with or overlies siliciclastic or
evaporite deposits in the Muddy Creek Formation along the course
of the Colorado River in the Lake Mead area. Limestone deposi-
tion occurred between ca. 11 and 6 Ma (Lucchitta, 1979; Faulds
et al., 2001; Spencer et al., 2001). In the Grand Wash Trough, at
the mouth of the Grand Canyon, limestone beds interfinger with
clastic deposits lower in the section and become cleaner and more
extensive higher in the section (Lucchitta, 1979). Excluding beds
that have been deformed by movement on the Wheeler fault zone,
the uppermost Hualapai Limestone beds in the Grand Wash Trough
are �900 m a.s.l. (Howard and Bohannon, 2001). Farther west in
the Lake Mead area, thinner Hualapai deposits overlie a varied
landscape (Lucchitta, 1979), and the highest outcrops are �700 m
a.s.l. (Howard and Bohannon, 2001). A similar package of lime-
stone overlying siliciclastic sediments, including the 5.6 Ma tuff
of Wolverine Creek and evaporites, is exposed in a small basin
northeast of Las Vegas (Castor and Faulds, 2001; Castor et al.,
2000). The highest limestone deposits there are �670 m a.s.l.

We postulate that an influx of Colorado River water through
the developing Grand Canyon resulted in deposition of at least the
upper part of the Hualapai Limestone, deepening and expanding
preexisting lakes (Figs. 11A and 11B). The basins in the western
Lake Mead area were ultimately inundated by a sizable lake that
filled to �700 m a.s.l. and then spilled through the Black Canyon
area and initiated or accelerated the filling of Cottonwood Valley
with sediment and, ultimately, water (Fig. 11A). The lacustrine
deposits in the Lake Mead area may have been locally overlapped
by Colorado River sediment, but in most places even the highest
Colorado River alluvium is inset below the highest level of Huala-
pai deposition (Howard and Bohannon, 2001). This implies that
the lake basins had drained and had undergone some erosion be-
fore the arrival of substantial amounts of Colorado River bed load.

Bouse Associations between Laughlin, Nevada,
and Parker, Arizona

Deposits of the Bouse Formation are relatively extensive
along the lower Colorado River downstream from Mohave Val-
ley, and they have stratigraphic and geographic characteristics
that can be reconciled with a downstream-directed lake-spillover
model of integration. For example, in the Parker, Arizona, area,
Buising (1988, 1990) described a stratigraphic relation in which
a distinctive cross-stratified deposit of fluvial gravel that is
interfingered with the base of the Bouse Formation overlies
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would “young” to the north, whereas in a lacustrine scenario, the
opposite would be the case as lakes spilled downstream. Presently
available data about directional age trends in the Bouse Forma-
tion are equivocal, however. Our tephrochronologic data con-
strain the age of the Bouse in Mohave and Cottonwood Valleys to
between 5.6 and 4.1 Ma. We suspect, but do not know, that the age
of the Bouse is closer to 5.6 than to 4.1 Ma, since the latter age
corresponds to the near culmination of a series of major events
that occurred after Bouse deposition in our study area. Down-
stream from our field area, the ca. 4.8 Ma Lawlor Tuff (Sarna-
Wojcicki et al., 1991) sits near the top of Bouse limestone deposits
in the Parker-Blythe area. In combination, these constraints only
provide weak support for decreasing age of Bouse deposition in
a downstream direction.

Fossils in the Bouse Formation
The limited salt-water faunal assemblages identified in the

Bouse Formation in the Parker-Blythe basin (Smith, 1970; Luc-
chitta et al., 2001; McDougall, 2005) are the principal remaining
support for a marine incursion. The lowermost Bouse lake would
have encompassed an immense area extending from Parker Val-
ley to the Chocolate Mountains and westward into a series of low-
lying basins in the Mohave Desert (Fig. 1). Recent hydrologic
modeling suggests that it may have taken tens of thousands of
years to fill this extensive lake to overflowing due to likely high
rates of evaporation; consequently, the lake water could have
become quite saline prior to spilling into the Yuma area (Spencer
et al., this volume). This might have allowed salt-water fauna to
survive in the lake, but the mechanism for transportation of
marine fauna into such a lake, if it existed, is disputed (Lucchitta
et al., 2001; Spencer and Patchett, 1997).

Distribution of Pliocene Colorado River Deposits

An increasing body of evidence indicates that an integrated
Colorado River was traversing the Colorado Plateau and building
a delta near the latitude of its modern terminus by the early
Pliocene. Evidence from near the mouth of the Grand Canyon
indicates that that the earliest integrated Colorado River flowed
on top of the Hualapai Limestone, and the river had incised into
the limestone before 4.7 Ma (Howard and Bohannon, 2001). Our
studies indicate that the river was approaching its maximum level
of aggradation in Mohave and Cottonwood Valleys by ca. 4 Ma.
Paleobotanical evidence from Colorado River deposits near
Yuma indicates that high-standing river gravels were deposited
there in approximately the middle Pliocene (Nations et al., 1998).
Recent paleomagnetic and paleontologic studies of sediments in
the Salton Trough suggest that the first arrival of Colorado River
sand could possibly have occurred as early as 5.33 Ma, the
Miocene-Pliocene boundary (Dorsey et al., 2007). This age, how-
ever, is difficult to reconcile with the Lawlor Tuff constraint
mentioned previously, because its presence in the Bouse would
preclude the arrival of the river into the Salton Trough prior to 
ca. 4.8 Ma, barring a particularly complex series of events.

The timing of the first arrival of Colorado River alluvium in
the Salton Trough suggests that the entire south-trending part of
the lower Colorado River developed after 5.6 Ma (the age of the
tuff of Wolverine Creek) and possibly as early as 5.33 Ma (Dorsey
et al., 2007) or maybe after 4.8 Ma (age of Lawlor Tuff). In either
case, this geologically short interval of Bouse deposition and river
development is more consistent with relatively rapid filling and
spilling of a series of lakes than with a sequence of regional sub-
sidence and marine transgression, immediately followed by
regional uplift and concurrent, thick river aggradation. Further-
more, the presence of a through-going river below the edge of the
Colorado Plateau before 4.7 Ma and the accumulation of a thick
alluvial fill in valleys downstream by ca. 4.1 Ma strongly suggest
a linkage among erosional and depositional events that is neither
dependent on nor fully consistent with regional uplift along the
river’s entire lower course. The simplest explanation is that the
episode of massive early Pliocene aggradation along the lower
Colorado River was forced by upstream integration and canyon
incision, and it was minimally influenced by tectonic events.

River and Lake Associations in the Western United States

Linkages among rivers and transient lakes are common in 
the geologic record, particularly in areas of crustal extension (Pot-
ter, 1978; Cohen, 2003). This circumstance prevails in the Basin and
Range Province of the western United States where Miocene exten-
sion produced an array of closely spaced basins bounded in many
cases by high-standing, relatively well-watered mountain ranges. In
this region, there are many examples where runoff from persistent,
orographically enhanced precipitation in large highland areas fed
rivers that formed lakes in arid to hyperarid, low-lying basins. Time-
varying hydrologic inputs and regional topographic constraints
have resulted in different extents of basin interconnection as valley
divides have been intermittently or permanently overtopped.

Several examples of rivers in the Great Basin illustrate dif-
ferent degrees of fluvial integration related to filling and spilling
of series of enclosed basins. Throughout the Pleistocene, fluctu-
ating hydrologic inputs to the Lahontan Basin from the Truckee,
Carson, Walker, and Humboldt Rivers resulted in an array of
interconnected lake basins in relatively arid, low-lying valleys in
western Nevada and eastern California (Morrison, 1991). Topo-
graphic enclosure of the lake basin, however, has obviated the
development of a through-flowing river system. Limited basin
interconnection linked to major flooding from lake overflow dur-
ing late Cenozoic highstand conditions has been reported from
several sites in the Great Basin, including: the Mono Basin in
eastern California (Reheis et al., 2002); the Bonneville Basin in
northern Utah (Gilbert, 1890; O’Connor, 1993), and the Alvord
Basin in southeastern Oregon (Carter et al., 2006). The Owens
(Jannik et al., 1991), Mojave (Meek, 1989; Miller, 2005), and
Amargosa Rivers (Morrison, 1991; Menges and Anderson, 2005;
Knott et al., this volume) provide examples of more extensive and
persistent downstream-directed integration. In each of these
cases, fluvial integration through once-enclosed basins continued
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to regions of insurmountable topographic enclosure, where the
Amargosa River terminus in Death Valley is the best example.
The Rio Grande and the Snake River provide two examples of
complete downstream-directed integration to the sea (Mack et al.,
1997; Connell et al., 2005; Wood and Clemens, 2002).

In each case cited here, the balance between water and sedi-
ment inputs and topographic impediments determined the extent,
continuity, and persistence of integration. In the case of the Colorado
River, the serial juxtaposition of large parts of the southern and cen-
tral Rocky Mountains, the Colorado Plateau, the Basin and Range,
and the Salton Trough appears to have provided an ultimately effi-
cient conduit for connection of the upper basin with the sea. Perhaps
the principal remaining questions involve the specific hydrologic
and geologic circumstances on the Colorado Plateau and points up-
stream that combined to set the integration process in motion.

CONCLUSIONS

The new stratigraphic evidence and tephrochronologic data
from Cottonwood and Mohave Valleys reported here are consis-
tent with the lake-spillover model of Colorado River integration.
The data, their implications, and their relations to other con-
straints on river evolution pose some challenges to models of river
inception and early evolution that invoke combinations of subsi-
dence, headward erosion, marine transgression, marine regres-
sion, and regional uplift. Our interpretation of the field evidence
reported here is that a series of lakes developed after 5.6 Ma along
the course of the lower Colorado River below the mouth of the
Grand Canyon to at least Mohave Valley, and these lakes were
drained in succession as divides were breached and lowered.
Large volumes of coarse Colorado River sediment eventually
arrived in these valleys, resulting in massive river aggradation
between 5.6 and 4.1 Ma. The period of thick aggradation was con-
current with drainage integration and canyon enlargement
upstream and with the arrival of Colorado River sediment in
basins downstream. The proposed mode of basin interconnection
and river integration through lake spillover is a well-documented
phenomenon on numerous river systems in the interior of the
western United States. The downstream integration of the lower
Colorado River was particularly effective because it connected a
large, well-watered highland source area with progressively
lower-lying arid valleys and the developing Gulf of California.

APPENDIX 1. TEPHROCHRONOLOGY

The discovery and identification of three different late Ceno-
zoic tephra beds at important stratigraphic levels in the study area
provide new bracketing age controls on the evolution of the lower
Colorado River. The tephrochronologic data help to establish a
temporal context for our work that can be directly related to pre–
and early Colorado River stratigraphic records reported from
other sites both upstream and downstream of our study area.

Glass shards from eight samples of tephra layers in the study
area were analyzed at the University of Utah Tephrochronology

Laboratory. Analyses were done with a Cameca 50SX electron
microprobe using methods discussed in Perkins et al. (1995,
1998). These analyses were compared with the laboratory’s
extensive database of electron microprobe analyses of late Ceno-
zoic tephra layers in the western United States using methods 
of Perkins et al. (1998). Age estimates and errors for tephra lack-
ing isotopic age control follow the methods discussed next. The
age comparisons indicate that the tephra samples are each from
one of three regionally distributed tephra layers: the ca. 3.3 Ma
Nomlaki Tuff; the ca. 4.1 Ma lower Nomlaki tephra layer; or the
5.59 Ma tuff of Wolverine Creek (Table A1). We discuss chemi-
cal characteristics and age control for these three tephra next.

Tuff of Wolverine Creek

The tuff of Wolverine Creek was generated during one of a
series of eruptions at ca. 5.6 to ca. 5.5 Ma in the Heise volcanic
field in the eastern Snake River Plain (Morgan and McIntosh,
2005). The sequence of eruptions commenced with the em-
placement of the tuff of Wolverine Creek and concluded with
the emplacement of the Connant Creek Tuff. All these tuffs 
have essentially identical glass shard composition (Table A1)
and are compositionally distinct from other silicic tuffs of the
Heise volcanic field (Perkins and Nash, 2002). The single
40Ar/39Ar sanidine age for tuff of Wolverine Creek is 5.59 �
0.05 Ma, while the weighted mean of three 40Ar/39Ar sanidine
ages for the Connant Creek tuff and equivalent tuff of Elkhorn
Spring is 5.51 � 0.08 Ma (calculated from dates in Morgan and
McIntosh, 2005).

Perkins et al. (1998) first identified a distal tuff from the tuff
of Wolverine Creek–Connant Creek tuff sequence in the Muddy
Creek Formation (Arrow Canyon section) of southern Nevada.
Based on X-ray fluorescence (XRF) analysis, this distal tuff best
matches analyses of the type tuff of Wolverine Creek. Composi-
tionally similar tephra samples have been identified in the Muddy
Creek Formation at Frenchman Mountain, Nevada (Castor et al.,
2000; Castor and Faulds, 2001) and in the Lost Cabin beds in
Cottonwood Valley along the lower Colorado River (House et al.,
2005a). We conclude that it is likely that the Wolverine tephra 
is the only tephra from this Wolverine Creek–Connant Creek
sequence in the Lower Colorado River region.

Lower Nomlaki Tephra Layer
The lower Nomlaki tephra layer is an informal name given

to a tephra layer in Death Valley, California, which lies �26 m
below the Nomlaki tephra layer (Knott and Sarna-Wojcicki, 2001).
The average glass shard composition of the lower Nomlaki tephra
layer is similar to that of the Nomlaki tephra layer (discussed
next), but it has measurably higher MnO and Cl and somewhat
lower CaO values than the Nomlaki tephra layer. The lower Nom-
laki tephra layer is further distinguished by a unimodal glass shard
composition that contrasts with the polymodal glass shard com-
position of the Nomlaki Tuff (Table A1). Finally, the single mode
of the lower Nomlaki tephra layer does not correspond to any of
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the modes recognized in the Nomlaki Tuff, so microprobe analy-
ses can be used to confidently distinguish between the lower
Nomlaki and Nomlaki tephra layers.

Our age estimate for the lower Nomlaki tephra layer is 
4.06 � 0.46 (1�) Ma, or, rounding to significant decimal places,
4.1 � 0.5 Ma. This age is the weighted mean of two linear
extrapolation age estimates using Bristol Lake core CAES#1
(Sarna-Wojcicki et al., 2001) and Artist Drive section 2 (Knott
and Sarna-Wojcicki, 2001). Error estimates for individual ex-
trapolation ages are from an empirical error model for such age
estimates (M. Perkins, 2007, personal commun.). This model, fit-
ted to tephra-bearing sections and cores throughout the Basin and
Range, conservatively reflects observed variation in sedimen-
tation rates in these sections and cores.

The lower Nomlaki tephra layer has a reversed polarity
(Knott and Sarna-Wojcicki, 2001). Thus, it likely lies within
either chron C2Ar (3.58–4.18 Ma), as suggested by Knott and
Sarna-Wojcicki (2001), or within chron C3n.1r (4.29–4.48 Ma).
An improved estimate of the age of this tephra layer is needed in
order to distinguish between these two possibilities.

The mean glass shard compositions of individual Lower
Nomlaki tephra samples vary more than expected based on analyt-
ical error alone. It is uncertain if this variation represents variabil-
ity within the lower Nomlaki tephra layer or if it indicates that there
are, perhaps, two or more separate tephra layers with similar but
somewhat different compositions. Tephra samples jf-01–07 and
CWAJB02 from the lower Colorado Basin are compositionally
identical to CAES#1–1143 in the Bristol Lake boring CAES#1. In
contrast, sample JRK-DV-39 from the type area of the lower Nom-
laki tephra layer, has measurably lower CaO values than these
threesamples.Similarly,Topock#1fromthe lowerColoradoBasin
also is measurably different from these first three samples and has
measurably lower CaO values. For the present, we conclude that
all five samples are most likely from a single tephra layer, but
future findings may require modification of this conclusion.

Nomlaki Tuff

The 3.3 Ma Nomlaki Tuff is a widespread tephra layer
(Sarna-Wojcicki et al., 1991). With a source in the Lassen Peak
area of northeastern California, the Nomlaki Tuff is recorded in
many areas of California, including Death Valley. It is also pres-
ent in the Bonneville Basin of Utah (Williams, 1994), east Central
Nevada (M. Perkins, 2007, personal commun.), and as far south-
east as the Rio Grande Rift (Connell et al., 1999). As reported
by Williams (1994) and Knott and Sarna-Wojcicki (2001), the
Nomlaki Tuff was deposited during the Mammoth subchron of
the Gauss polarity chron. Williams (1994), based on sedimenta-
tion rates at the base of the Burmester core, estimated an age of
3.29 Ma for the Nomlaki Tuff. Our age estimate for the Nomlaki
tephra layer is 3.29 � 0.05 Ma using the error model discussed
previously. This is a weighted average of two extrapolation age
estimates using the Burmester, Utah, core (Williams, 1994) and
the Willow Wash, California, section (Reheis et al., 1991).

Glass shards of the Nomlaki tephra layer are compositionally
distinctive and readily distinguished from those of other tephra lay-
ers in the database. As first recognized by Williams (1994), glass
shards of the Nomlaki tephra generally fall within one of three
compositional modes: mode I, the low Fe2O3 mode (�0.98 wt%);
mode II, the intermediate Fe2O3 mode (�1.18 wt%); or mode III,
the high Fe2O3 (�1.40 wt%) mode (Table A1). All Nomlaki Tuff
samples have two abundant modes, modes I and II. Mode III is
missing in some analyses, but this likely reflects the low frequency
of this mode. Furthermore, no other tephra layers are know to con-
tain these three modes. Thus, modes I and II and mode III (when
present) are characteristic of the Nomlaki Tuff. Finally, we note that
a fourth, very low Fe2O3 (�0.75 wt%) mode, mode IV, is observed
in samples from the lower Colorado River region and east central
Nevada (Table A1). Since these samples also have the characteris-
tic modes (I, II, and III) of the Nomlaki Tuff, we are confident they
are samples of the Nomlaki Tuff.
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