Some images from Google Earth and Google Maps of an area of significant lava and river interaction in Argentina. Field Trip! The center of the image is approximately 36.40 S, 69.42 W.
This site was discussed in the following talk:
GEOMORPHIC HISTORY OF RIVERS DRAINING THE EASTERN ANDEAN CORDILLERA (34–37°S) CONSTRAINED BY TEPHROCHRONOLOGY, U-SERIES DATING OF PEDOGENIC CARBONATE AND COSMOGENIC 3HE DATING OF BASALT FLOWS
HYNEK, Scott A., Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0119,
scott.hynek@utah.edu, MARCHETTI, David W., Geology Program, Western State College of Colorado, 600 N. Adams St, Gunnison, CO 81231, FERNANDEZ, Diego P., Geology and Geophysics, University of Utah, 115 S. 1460 E. Rm 383, Salt Lake City, UT 84112, and CERLING, Thure E., Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112Alluvial deposits and associated geomorphic features are dated by their relation with volcanic rocks. The age range and geologic setting requires a broad approach to constraining the history of rivers draining the Cordillera. Maximum age estimates are provided by identification of the ~ 450 ka Diamante Tuff in fill terraces. Along the Río Diamante this ash bed is observed >100 m above modern river level. In the Río Papagayos and Río Atuel drainages, the Diamante Tuff is associated with alluvial surfaces much closer to modern river level. Coarse Diamante pumice in the Río Atuel implies significant changes to the headwater drainage system since 450 ka. The maximum age constraint implied by occurrence of the Diamante Tuff in fill terraces has been successfully combined with minimum age estimates from cosmogenic
10Be approaching 350 ka (Baker et al., 2009). The relatively old age of alluvial surfaces in the region is additionally supported by U-series age estimates derived from pedogenic carbonate in volcanic soils. A minimum age in excess of 100 ka is conservative. The dated surface is underlain by a pumice/lapilli tephra deposit and basalt flows both of which have the potential to provide maximum age estimates for the surface. Conversely, the U-series data implies that the basaltic volcanism is older than 100 ka. Our age estimates of flows in several drainages are much younger. Cosmogenic
3He concentrations in hornblende from basaltic-andesites erupted along the Río Salado indicate exposure, and therefore eruption, ages younger than ~ 6 ka. These flows temporarily dammed the Río Salado in one location and bedrock incision below the level of the flows has occurred since.
3He concentrations in olivine from basaltic rocks at northeastern Volcán Payún Matru indicate a shield-building phase at ~ 40 ka. Recent basaltic aa flows from multiple vents are morphologically quite young and
3He exposure ages are forthcoming for one of them. The Río Grande has incised the older flows, and provides an average incision rate over a full glacial cycle. Combination of geochronological data from the region indicates provides accurate, if not tightly constrained, ages for alluvial surfaces and identifies spatially variable geomorphic rates influenced, in part, by contemporaneous volcanism.
Posted via email from Fresh Geologic Froth